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✤ Calculations for forward production of lepton pairs.

✤ Twist expansion.
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Drell-Yan: collinear factorization

In the standard collinear factorization approach Drell-Yan process described by the 
fusion of the quark-antiquark and the production of the  massive photon with 

subsequent decay. Higher orders involve gluon corrections.

Available at NNLO

M : invariant mass of 
the lepton pair

LO :

NLO :
Altarelli, Ellis, Martinelli;

Kubar-Andre, Paige

Matsuura, van der Marck, van Neerven, Hamberg;
Blumlein, Ravindran
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Dipole model for Drell-Yan

Drell-Yan process at high energy in the forward rapidity region

Brodsky, Hebecker, Quack;
Kopeliovich, Raufeisen, Tarasov;
Kopeliovich, Tarasov, Schaefer;

in CGC formalism

Gelis, Jalilian-Marian;

The quark from the projectile interacts with the field of the target, and radiates the 
massive photon (before or after the interaction). Photon decays into the leptons.

Enhanced (in the small x limit) diagrams are with the 
gluons of the target. Incoming quark is mostly valence.

here that the last condition allows us to neglect higher-twist contributions from spectator

partons in the projectile [11].

In the parton model the above process is described as the fusion of a projectile

quark with momentum fraction x ≈ xF and a target antiquark with momentum fraction

xtarget ≈ M2/sxF " 1. (Here and below we neglect the antiquark distribution of the

projectile at the relevant values of xF .)

However, a different physical picture of this process is appropriate in the target rest

frame: A large-x quark of the projectile scatters off the gluonic field of the target and

radiates a massive photon, which subsequently decays into leptons (compare [12]). The

two relevant diagrams, corresponding to the photon being radiated before or after the

interaction with the target, are shown in Fig. 4. Diagrams where the quark interacts with

the target both before and after the photon vertex are suppressed in the high energy

limit [13]. Note that in the above approach no antiquark distribution of the target has

to be introduced. Instead, its effect is produced by the target color field.

k k' k'

8-96 8206A3

q

k

q

Fig.4 Production of a massive photon by a quark scattering off the target field. A quark
with momentum k interacts with an external field producing a photon with momentum
q and an outgoing quark with momentum k′.

In the high energy limit, i.e. q0, k0, k′
0 # M2, the corresponding cross section, includ-

ing the decay of the photon into the lepton pair, reads (e2 = 4παem)

dσ̂

dxF dM2
=

e2

72(2π)3
·

1

xF k0k′
0M2

∫ d2q⊥
(2π)2

d2k′
⊥

(2π)2
|T |2 . (11)

Here T is the amplitude for the production of the virtual photon, given by the sum of

the two diagrams in Fig. 4,

i2πδ(q0+k′
0−k0)Tλ = eūs′(k

′)

[

V (k′, k−q)
i

k/− q/
ε/λ(q) + ε/λ(q)

i

k/′ + q/
V (k′+q, k)

]

us(k) .

(12)

The matrix V is the effective quark scattering vertex introduced in the previous section,

and ε(q) is the polarization vector of the produced photon, accessible via the lepton

7
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What we mean by ‘small x’?

In  the parton model:

x1 ∼ 1

Expect that on the target side the gluon density is the dominant

x1,2

Light-cone momenta of partons 
in the partonic subprocess

The hierarchy of scales : M2 � s

x1 ∼ xF

in fact:

x1x2 = M2/s ≡ τ

x1 =
1
2
(
�

x2
F + 4τ + xF ) , x2 =

1
2
(
�

x2
F + 4τ − xF )

x2 =
M2

s x1
� 1
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Dipole model for Drell-Yan

As an example use the Golec Biernat and Wusthoff formula

Drell-Yan in the dipole model at small x 

z Fraction of the energy of the 
quark taken by the photon

r Photon - quark transverse 
separation

Radiation of the photon from the fast quark

Structure function of the 
incoming projectile

We will also use other models.
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Recall dipole model for DIS

Dipole model for DIS

Cross section:

Wave function 
of the photon

Dipole cross 
section

In DY: although there is no physical dipole, the slow gluon ‘sees’ one as 
the interference of diagrams with emissions of the photon.

σT,L(x,Q2) =
�

d2r

� 1

0
dz|ΨT,L(z, r)|2σ̂(x, r)
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Predictions for LHC

M = 6, 8, 10 GeVDilepton mass
dipole-GS (Golec-Sapeta)

DGLAP includedLarge differences between collinear approaches

Dipole predictions systematically lower than the collinear calculations.

typical values probed at energies 14-7 TeVx2 � 3 · 10−6 − 10−5

y ∼ 5− 6 range of rapidities
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Twist expansion

What do we mean by ‘twist expansion’ ?

Classify different contributions by ∼
�

1
M2

�p

Due to the presence of the nonlinear terms in the dipole 
cross section we classify these corrections by ∼

�
Q2

s(x)
M2

�p

Methods developed and applied to DIS 
structure functions:

Bartels, Golec-Biernat, Peters;
Bartels, Golec-Biernat, Motyka.

Friday, May 13, 2011



Twist expansion for Drell-Yan

First recall the method in DIS:

Cross section:

Take Mellin transform:

σT,L(x,Q
2) = σ0
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Poles in            control behavior in      γ 1/Q2

Photon wave function dipole cross section
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Twist expansion for Drell-Yan

It is more complicated than in DIS, because of the convolution with the 
structure function of the forward projectile.

Cannot directly perform integral over   z (fraction of the light-
cone momentum of the initial quark carried away by the photon), 

since it is weighted by the structure function of the projectile.

Two methods: fully analytical in terms of expansion in (1-x1). 
Semi-analytical with exact results for twist contributions

d
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Twist expansion: series

Expand it around z=1

Systematic expansion. Turns out very slowly 
convergent, because x1 is large but not large enough x1 ∼ 0.1− 0.2

Define the function:

In practice different method used to obtain exact results.

Expansion for the cross section:
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Twist expansion: explicit

Twist 2: contribution from γ = 1

First term contains the contribution from the double pole in the Mellin space 
(hence the logarithm). The result is exact twist 2 contribution.

Note the integrals over z over the structure function of the projectile.
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Twist expansion: twist 4

Twist 4: contribution from γ = 2

Closed expressions found, though more cumbersome

The same can be computed for longitudinal component.

Again regularized integral
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Twist expansion: longitudinal part

Expansion for the longitudinal part:

Twist 2:

Twist 4:
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Twist expansion for DY: results

• Twist expansion divergent for M<4.
• For higher masses M>6 twist 2 sufficient.
• For longitudinal twist 2 overestimates, for transverse part 

underestimates the exact result. 
• The sum is better approximated by twist expansion.
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Conclusions

✤ Suppression of the dipole model results with respect to the collinear 
approximation.

✤ However, large discrepancies between different models  in the highest 
energy range.

✤ Twist expansion for the case of GBW formula can be constructed.

✤ More involved procedure for DY than in DIS. Semi-analytical results 
possible.

✤ Twist expansion divergent for invariant masses < 4-6 GeV.
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